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AbstmG The pair annihilarion of identical particles iniIially distributed at random and 
intemcting by a tunnelling law is studied. Monte Carlo simulations are performed in one and 
two dimensions to measure the density and the two-particle correlations which show a tendency 
to local ordering of the surviving particles. This model is shown to be equivalent to a simpler 
model that we can solve on a one-dimensional lattice. Ln this case, the self-ordering property can 
be prowd and characterized. This analysis is then naturally extended to higher dimensionalities. 

1. Introduction 

Disordered systems submitted to stochastic dynamics can show a tendency to self- 
organization [l]. This is well lcnown for open systems involving nonlinear dissipative 
transport which evolve into a self-organized critical state [Z]. More generally, dynamical 
long-range correlations can be expected in non-equilibrium steady states. Long-range 
(compared to the initial separation) correlations may also arise in static and diffusing 
reaction systems from the interplay of a time-dependent reaction front (defined below) with 
fluctuations in the initial distribution of reactants [3-51. Here, we are specifically concemed 
with the kind of self-organization which is found to appear in the large time regime of static 
pair annihilation (SA) processes. 

In this model a set of A particles randomly distributed on a lattice remain fixed and are 
removed by fusion, A + A -+ 0, with an isotropic rate w(r)  = WO exp(-r/ro) for any two 
particles separated by distance r .  Monte Carlo (MC) simulations on a cubic lattice clearly 
indicate the growth with time of the two-particle correlation function g&, t )  [6].  Mean 
field theory thus fails to predict the surviving particle density p ( t )  at long times, which is 
found to decrease in a universal way, and is related to the space dimension and not to the 
initial distribution. 

Our aim here is to give some analytical insight into the dynamical generation of the 
observed order. In addition, this allows us to give an accurate description of the decay at 
any time. This is useful from a practical point of view: p ( t )  is, for example, directly l i e d  
to delayed fluorescence in disordered solid solutions of aromatic molecules, the A + A -+ 0 
reaction corresponding to fusion in hiplet states [7]. 

The way we proceed is to consider a simpler model where the annihilation is constrained 
to occur through a cascade of successive stages, each stage corresponding to a fixed value 
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of the interaction range. In the first stage, all pairs of neighbours are randomly destroyed, 
in the second stage, all pairs of next-to-nearest neighbours vanish, and so on. Within each 
stage the dynamics is simple, the difficulty being how to keep track of the initial data 
entering any stage which are given by the configuration of the system at the end of the 
previous stage. 

As we show in the next section, this staggered static annihilation (SSA) model can be 
exactly solved on a one-dimensional lattice, in contrast to the SA model. Its long-range 
order appears as a consequence of the resummation of the fluctuations on any scale. In 
order to compare these exact results with the SA model, we have performed MC simulations 
of the SA process on a line and on a one-dimensional lattice. This is done in section 3 where 
we show the asymptotic equivalence of the two models and propose a mapping between 
the SA and SSA models at any time. 

From the analysis of the self-ordering in one dimension, we expect an analogous 
dynamical clustering to occur in higher dimensions; this is explained in section 4 where we 
discuss Mc simulations of the SA model in two and three dimensions. 

2. Exact solution of the SSA model 

We precisely define the SSA model in the following way. Consider a set of particles on 
sites of an infinite one-dimensional lattice of unit spacing. Initially, the sites are randomly 
and uniformly occupied with at most one particle per site, at some arbitrary particle density 
PO. Then, the particles decay through the static staggered pair annihilation described in 
section 1 .  By definition, the decay is such that at any stage no particle can survive between 
the two members of an annihilating pair. Any surviving particle thus separates the lattice 
into left and right uncorrelated sub-lattices. This screening property is at the root of the 
solvability of the model. 

We first solve the dynamics during an arbitrary stage that we label j ,  j > 1. TO 
describe the random sequential decay during this stage, we introduce an internal time rj 
and the more convenient variable z = e 0  which runs from one (beginning of the stage) 
to zero (end of the stage = complete disappearance of the pairs involved). Let p(z)  be 
the density and P (r1, . . . , ra-l; z) the probability of observing at time z (within stage j )  a 
string of n particles with separations r l . .  . . , rn-l in the lattice spacing unit. The screening 
property allows us to write 

“-1 

P(r1, . . . . rn-l : z) = p ( z )  n v(ri; z )  (2.1) 

where y(r ,  z )  is a conditional probability normalized according to y(0,z) = 1. Clearly, 
p(z)  and y(r,  z ) ,  linked to the pair probabilities PO; z ) ,  are sufficient to describe the 
configurations. We recall that y (r, z )  = 0 for 1 < r < j since we are in stage j ,  and since 
only pairs with separation j interact, we have the master equations 

i=l 

za&) = 2 P ( j ;  Z )  

z a , P ( j ; z )  = P ( j ; z ) + 2 P ( j ,  j ; z )  (2.2) 
z a , P ( r ; z ) = 2 P ( j , r ; z ) + 2 P ( j , r - j ; z )  r >  j 

of which the right-hand sides show the various ways of destroying a particle. For example, 
the factor 2 P ( j ;  z )  in the first equation is the probability that a particle annihilates with a 
right or left neighbour at distance j .  The second equation describes the evolution of the 
probability of a pair with separation j :  the members of the piir can annihilate mutually with 
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probability P ( j ;  z). or each member can annihilate with a third particle at distance j ,  which 
gives the additional factor 2PG. j ;  2). If the separation r of the pair is greater than j ,  the 
annihilation necessarily involves a third particle. This particle can be external, which gives 
a probability 2P(j, T;.z), or located between the two members of the pair, which gives a 
probability 2P(j ,  r - j; z).  as indicated in the third equation. Using (2.1) with n = 2, one 
obtains 

Z M Z )  = 2p(z)y(j; z) 

and thus 

z & y ( j ;  z) = y(j ;  z) za,y(r; z )  = 2y(j; z)y(r - j; z) 
(2.3) 

where we have introduced a stage factor wj = y(j ;  z = 1) to be determined below. To 
solve for y(r ,  z ) ,  it is convenient to consider the generating function 

which from (2.3) fulfils aJyx, Z )  = xjwj [I + 2 r ( ~ ;  z)]. 
One thus obtains 

I +2r(x;  z) = ez"-''w~x'~l +zr(x; o)]. (2.7) 
We are now in a position to sum up all the stages. Our conventions are to write pj-1 

for the density at the beginning of the stage j (and thus po is the initial density) and pj  at 
the end. From equation (2.4) one has with z = 0, p, = pj-le-2"1 and thus 

In the same way, rji-l(x) and r ; (x)  denote the pair probability functional at the 
beginning and at the end of the stage j. Equation (2.7) then reads 

1 + zrj(x) = e-"'"{l +zrj-l(x)} 
and thus 

where the initial r o ( x )  is given by 

since the distribution is uniform. 
Relation (2.9) can be rewritten as 

where rj(x) behaves like xi+' as x - 0 (equation (2.6) with z = 0). and thus 

k k  
1 - (1 - Zp& x = -In 

kl 2 ( I - n  

(2.10) 

(2.11) 
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Identification of the powers of x on either side of (2.11) gives the stage factors OK: 

1 - (1 - 2/20)' 
k ) l  

2k 
OK = (2.12) 

which completes the determination of the model at stage j in terms of the initial data. 
Returning to the density pj, we write pj = poexp(- cj) with 

I - d 1 
~ 2 1 - (1 --Po)' - 

j K = l  k - Lzm d' I-u 

which gives its continuation to any positive real value of j and its asymptotic behaviour as 
j + +CO. Putting U = 1 - u / j  in the last integral, one finds 

where y = 0.577 215. . . is the Euler constant. The 'universal' asymptotic behaviour of the 
density is thus 

e-)' 
lim p. - -. 

j+m ' - 2 j  
(2.13) 

The two-particle correlation function at distance r ,  gj(r) ,  is given by 

where 1 + Z r ~ ( x )  = e ~ p ( 2 & ~ + ~ ~ ~ 0 ~ ) .  This last relation is just equation (2.9) where 
(2.12) has been used. One finds, for example, 

In the asymptotic regime j + 03, it is convenient to rescale the distance r = j P  where 
r IS fixed. In this regime, the correlation function reaches a limiting function g - 0  given _ .  

bY 

O < P < l  g"=O 

1 $ P < 2  g m O = ,  ~ . .  (2.15) 
eY 
r 
ey 

2 < F <  3 g - 0  = -$1 +ln(7- 1)) 

and so on. At P = 3, g - 0  = 1.0052 and the asymptotic P limit (g-i.7 = 00) = 1) is 
practically reached, but the behaviour of gmO between one and three clearly indicates the 
presence of some order which will be discussed in section 4. 
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3. The SA model 

We recall that in the SA model, a set of A particles are randomly distributed on a lattice, 
they remain fixed and are removed by fusion, A + A + 0, with an isohopic rate 
w(r)  = moexp(-r/ro) for any two particles separated by distance r .  The dynamics of the 
SA model obey a hierarchy of equations for the n-particle distribution functions [8]. We give 
the first equations for a one-dimensional lattice, their generalization being straightforward: 

+ z C [ w ( r ’ )  t w(r t r’)Ifi(r, r’, t )  (3.2) 

where pz(r, t )  and p3(rl, rz,  t )  denote, respectively, the configurationally averaged 
probabilities at time t for a pair of particles separated by r ,  and for a triplet with successive 
separations rl and r2. 

From previous work [6], it appears that standard approximations of this hierarchy, like 
the Kirkwood approximation [9], are not appropriate for the SA model, except in its initial 
regime where the mean-field (m) approximation works. In the MF approximation, one puts 
gZ(r, t )  = 1, where the two-particle correlation function gZ(r, t )  is linked to pz(r, t )  through 
m(r, t )  = p2(t)gz(r, t ) .  The formal integration of (3.1) for the density p(t ) ,  which is 

7’>l 

then reads 

(3.4) 

On the other hand, it has been noticed in simulations of the SA model 161, and as we 
observe in all our cases, that the two-particle conelation vanishes for separations smaller 
than the reaction radius r&), which one can define as 

w(r&))t = 1 ra(t) = roln W O ~ .  (3.5) 
The idea of the reaction front is useful because of the fast radial decay of the interaction, 

and it can be traced back to work on electron scavenging [lo]. The probability of a pair 
of particles separated by less than r&) is very low. The time to such that r&O) - 1 then 
gives the upper h i t  where the MF approximation is valid. At that time, the density p ( t )  
reaches a value close to the MF value, and for t >> to 

gz(r, t )  = 0 for r Q r&). (3.6) 
Relation (3.6) is, of course, reminiscent of the basic property of the SSA model given 

in equation (2.14), i.e. gj (r )  = 0 for r ’<. j .  The appearance of a regime where (3.6) holds 
gives an opportunity to use the SSA model to describe the SA model under the identification 

j - j 0 )  = r&) (3.7) 

at least asymptotically. 
Then, under the phenomenological assumption (3.7) that the range of interaction at step 

j of the ‘SSA model is the reaction radius of the SA model at time t ,  one would obtain, 
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r&t) = 12.5 

O2 0 0 L 05 I 15 2 25 
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Eygure 1. The two-particle conelarim at long time (scaled variable T = ,/&(f)) in the SA model. 
The symbols correspond to the MC data obtained for the highest value of r.(t) (r.(t) = 12.5) 
on a onedimensional lattice for various initial densities p and the value ro = 0.3. Data for 
ro = 0.5 are of the same kind. The curve is Lhe asymptotic (r.(t) = m) correlation as predicted 
by equation (2.15) from the SSA model Errors are smaller than the symbols. 
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Figure 2. The surviving density p( t )  as a function of r.0) in the SA model. The symbols 
correspond to the various indicated onedimensional MC simulations. The curve is ihe universal 
asymptotic Limit of p(t)  as predicted by equation (2.13) with j = ra(t). Errors are smaller than 
the symbols. 
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for the asymptolics of the SA, model expression (2.13) for the density, with j = r,(t) and 
(2.14) for the two-particle correlation function gmO. with F = r/r&). 

These predictions are found to be in perfect agreement with the data derived from the 
MC simulations, as can be checked from figures 1 and 2. Each set of data corresponds to a 
sample of 2000 runs, using the algorithm described in [6], on a lattice or a line of 10000 
units length containing from 1500 to 7500 particles, depending on the initial density p .  

In fact, the identification is not only asymptotic, and a suitable mapping between the 
parameters of the two models can be performed so as to allow a good fit of the SA model 
in the whole time regime t > to where to is the end of the MF period. 

IC = 3 - 
1.8 

r.(O=U 0 MC. , - M d d  
1.6 

rJ0-5.5 0 M.C. Mdcl 

1.4 r.(O = 8.5 A M.C. - - M d d  

1.2 

I 

0.8 

0.6 

p = 0.15 
0.4 

02 

0 
0.5 a75 I 1.2~ 1.5 1.75 2 1.25 25 275 

Figure 3. The two-particle correlation function at fixed times. The symbols correspond to the 
MC simulation on the onedimensional lattice of the SA model with p = 0.15, ro = 03. The pair 
conelation function g2(i )  is mkured at three fixed values of r,(t) and plotted in the scaled 
variable i = ?/(ra(t) - 4). The lines illushate the corresponding predictions from the SSA model 
under the mapping of equations (3.8) and (3.9). Enors are smaller than the symbols. 

At this point, the continuous and the lattice cases may be distinguished. On the lattice, 
one can observe from the MC data that one can find a sequence of times tN, N 2 1 where 
N < ra(tN) < N + 1, such that practically all the pairs up to the distance N have been 
destroyed, the remaining pairs being unaffected. This is a sequence of snapshots where 
the SA and SSA models can be identified though j = N .  The precise determination of tN  
depends upon the values chosen for the parameters of the SA model. Here, for simplicity, 
we choose ra(tN) = N + 4 and define the mapping 

(3.8) 1 j -+ j@N) = N = ra(tN) - N > 1 

in agreement with the asymptotic constraint (3.7). To complete the determination of the SSA 
model we have to give its initial density po. The end to of the MF period for the SA model 
must correspond to some r&O) value between zero and one. We find that ra(to) = l+ro Inro, 
which gives, using (3.4), 
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as a good choice. The assumption that for t > to, the dynamics of the SA model can be 
described by the SSA model for j > 1, submitted to (3.8). leads us to define the initial 
density po as 

Po = PMF(t0). (3.9) 

Under the correspondence of (3.8) and (3.9) there is, then, a time sequence t~ where the 
two models coincide. One can check the accuracy of this approximation in figures 3 and 4 
where we display the pair correlation and the density. If we extrapolate relation (3.8) to any 
time t, t t to, the SSA model remains defined (j  real), but it does not necessarily reproduce 
the details of the SA model within the period [ t ~ ,  t N + l ] .  In the SA model the density, for 
example, can have some ro-dependent structure. in this interval (see [6]). If necessary, these 
details can be modelled by a mapping of stage j = N + 1 on to period [ t ~ ,  tN+l]. which 
involves, in particular, the adjustment of the time constant T N + ~ .  The physical basis of 
the mapping is the sharp radial decay of the reaction rate. On average, in the SA process, 
particles must annihilate with their current nearest neighbours. 

*... 
0 

0 2 4 6 8 IO 12 

r&O 

Figure 4. The surviving density p(t). A set of three MC experiments is displayed With their 
corresponding fits by the mapped SSA model. The initial density p = 0.15 corresponds to the 
continuous model. the remaining densities, p = 0.25 and p = 0.50, correspond Lo the lattice 
case. Errors are smaIier than the symbols. 

We now turn to the continuous case, which is simpler. The end of the MF period can 
be defined though r&) = Oc and, thus, we define po through (3.9) with 

PMF(t0) P(o)[1 + 2rOP(0)1-' 

which i s  given by expression (3.4) in the MF approximation of the continuous SA model 
(A = 2woro). As there is no 'quantification' of the reaction radius we just take j -+ j = r&) 
in accordance with the asymptotic relation (3.7) and the boundary condition j = 0 for t = to. 
A typical fit obtained in this way for the density is shown in figure 4. 
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4. Nature of the ordering 

In one dimension, the self-ordering property of the SA model can be analysed though the 
SSA model. The asymptotic density is p - e-Y/Zra(t) and the correlation g m 0  is giGen by 
equation (2.15), where i: is the scaled separation 7 = r/r.(z). On its first period 0 < P < 1, 
g,O = 0, which just reffects an excluded volume effect: because of the sharp drop 
in w(r) with increasing separation, it is extremely unlikely that two particles survive at 
a distance less than ra(t) at time f .  A first approximation to the distribution of surviving 
particles would be to represent them by hard rods (or disks or spheres in higher dimensions) 
of radius ra(t)/2.  In one dimension, the coverage O associated with this distribution is 
O = pr,(t) = e-r/2 = 0.2807.. .. The behaviour of g m o  fori: > 1 reveals the presence 
of a dynamical clustering, whose short range Q - 2) is reminiscent of the minimal order 
found in the random sequential adsorption (RSA) of hard rods. It is thus tempting to compare 
it with the RSA correlation at coverage 8. Using the exact results given in [Ill, it appears 
that the SA model self-ordering is seonger than the RSA self-ordering. It is even stronger 
than the order found in an equilibrium configuration of hard rods at this coverage, since we 
find for example gRSA(7 = 1,0 N 0.28) N 1.3 and g,(7 = 1,0 N 0.28) N 1.38, compared 
to g,(f = 1) N 1.78. In fact, the best representation of short-range SA order can be given 
in terms of an RSA model with cooperative effects which enhances clustering [12]. 

i 

Figure 5. Pair correlation functions for the continuous SA model in two dimensions, as a function 
of the mcaled variable i = r/r.(t). Errors ~ I E  of the order of the symbol size. The smooth 
curve is the asymptotic limit in d = 1 for comparison. The value of r g  is l/ln(100) and the 
initial density is 1.0 

In two dimensions the previous remarks set an upper bound for the density, the inverse 
of the particle excluded volume or z/Zf ir:( t )  for close packing. A more realistic estimate 
of the particle density may be obtained from equation (3.3), by representing the excluded 
volume as a step in g&), i.e. g&, t )  = @(r-r&)), or even the two-particle approximation 
gz(r, t )  = exp(-w(r)t). In the latter case, background particles are seen by only one 
member of a pair at a time [63. In both these cases, the asymptotic form of the density is 
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RSA modcl. flnrncighbmr 

.. . . .. . . S A  modcl. fini rrighbovr 

RSA modcl, weond neighbour 

. . . . . . . . S A  model.weondncighbaur 

1.4 

1.2 

1 

i 

Figure 6. Comparison of the distributions of distances to first and second neighbours of particles 
surviving the annihilation process (SA model) and of the random deposition of non-overlapping 
disks at the same density (RSA). The parameters are as in figure 5. 

easily found to be p( f )  = l/m:(t). This approximation is still an over-estimation of the 
density (see [6]) showing that the true gz(r, t )  must be greater than unity at the reaction front, 
cf figures 1 and 3 for dimension d = 1 and 161 for d = 3. For completeness, figure 5 shows 
gz(7, f )  in dimension d = 2. As in the static A + B + 0 problem [3] there are correlations 
of length r,, but in this case there is some additional structure shown by the oscillation of the 
correlation function. In the former case, the reaction simply reveals fluctuations in the initial 
distribution of A and B particles, leading to monotonic correlation functions [3]. The like- 
particle correlation functions deviate from unity because there is, in general, an imbalance 
of the numbers of As and Bs in a region of linear size r&), while the cross-correlation 
shows a simple excluded volume effect. In the case A + A --f 0, the initial state is, in 
contrast, increasingly homogenous on larger and larger scales. It is therefore reasonable to 
talk of ordering induced by the reaction, in view of the non-monotonic behaviour of the 
two-particle correlation function. 

As in the onedimensional case, this non-trivial behaviour determines the tail of 
the surviving particle density, p(t) .  In any dimension d, relation (3.3) is valid with 
g&) = J d r  w(lrl)gz(r, t ) .  When ro is sufficiently small, the integrand is sharply peaked 
at the reaction front and 

- 

- d?rd12 
row ( r a ( 0 ) r Y  (O r(l + d/2) gz@) - gm(7 = 1) 

yielding 

The dynamical constant g& = 1) is expected to depend upon the dimension only, and, 
in principle, can be evaluated through the SSA model in dimension d. This model cannot 
be exactly solved as the one-dimensional screening property is no longer valid. An m-like 
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approximation of SSA can be obtained assuming the factorization of the pair probabilities, 
which is a reasonable assumption suggested by the random sequential deposition of 
dimers [12], which has dynamics very close to the SSA dynamics In any given stage. 
However, this is not a simple task and we do not perform it here. For the time being we 
give the numerical estimates found from MC experiments: g& = 1) - 1.5-1.7 for d = 2, 
and g,v = 1) - 1.4-1.6 for d = 3 [61. As for d = 1, g,(f = 1) = ev = 1.78107.. .. it 
may be that g, is independent of dimension. Longer simulations are needed to check this. 

To summarize, the distribution of surviving particles appears to be closely connected 
with the random deposition of non-overlapping objects (RSA) model. We observe that the 
equations goveming the dynamics in each stage of the SSA model are similar to those in 
the RSA model. More empirically, figure 6 compares the distributions of first and second 
neighbours in the continuous SA model in d = 2 with the corresponding distribution for hard 
disks of diameter r. at the same density. Except at the reaction front, where the exclusion of 
overlap is probabilistic rather than absolute in the SA model, the distributions are very close. 
We mention in passing that the angular distributions of the first and second neighbours are 
very similar. 

5. Conclusion 

We have defined a model-the SSA model-which can be exactly analysed in one dimension. 
The dynamical generation of the long-range order which is found can be compared, through 
a rescaling of the distance, to the shoa-range order due to volume exclusion found in RSA 
processes with some cooperative effects. We have shown that in the long-time l i t  this 
model and the SA models are related in a simple way. Our MC experiments and our analysis 
indicate that the SA model has essentially two regimes, which simplifies the description 
proposed in [6]. The short-time regime is MF-lie. This regime ends when the reaction 
radius becomes comparable to the initial particle separation. Then, the dynamics develop 
in a way which can be described in terms of the SSA model though a suitable mapping of 
the parameters. 

It would be interesting to consider the extension of the SSA model to the A + B + 0 
annihilation process. Here, the one-dimensional case can be analytically solved and may 
provide an accurate description of the asymptotics of the corresponding SA model to 
complement the existing numerical results [6,13]. 
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